首页> 外文OA文献 >Object Detection in Videos with Tubelet Proposal Networks
【2h】

Object Detection in Videos with Tubelet Proposal Networks

机译:用Tubelet提议网络进行视频中的目标检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Object detection in videos has drawn increasing attention recently with theintroduction of the large-scale ImageNet VID dataset. Different from objectdetection in static images, temporal information in videos is vital for objectdetection. To fully utilize temporal information, state-of-the-art methods arebased on spatiotemporal tubelets, which are essentially sequences of associatedbounding boxes across time. However, the existing methods have majorlimitations in generating tubelets in terms of quality and efficiency.Motion-based methods are able to obtain dense tubelets efficiently, but thelengths are generally only several frames, which is not optimal forincorporating long-term temporal information. Appearance-based methods, usuallyinvolving generic object tracking, could generate long tubelets, but areusually computationally expensive. In this work, we propose a framework forobject detection in videos, which consists of a novel tubelet proposal networkto efficiently generate spatiotemporal proposals, and a Long Short-term Memory(LSTM) network that incorporates temporal information from tubelet proposalsfor achieving high object detection accuracy in videos. Experiments on thelarge-scale ImageNet VID dataset demonstrate the effectiveness of the proposedframework for object detection in videos.
机译:随着大规模ImageNet VID数据集的引入,视频中的对象检测最近引起了越来越多的关注。与静态图像中的对象检测不同,视频中的时间信息对于对象检测至关重要。为了充分利用时间信息,最新技术是基于时空小管的,这些小管实质上是跨时间的关联边界框的序列。然而,现有的方法在质量和效率上产生细管具有主要局限性。基于运动的方法能够有效地获得致密的细管,但是长度通常仅为几个帧,这对于结合长期时间信息不是最佳的。基于外观的方法通常涉及通用的对象跟踪,可能会产生较长的细管,但通常计算量很大。在这项工作中,我们提出了一个视频中目标检测的框架,该框架包括一个可有效生成时空建议的新型试管建议网络,以及一个结合了试管建议的时间信息以实现高目标检测精度的长短期记忆(LSTM)网络。视频。在大型ImageNet VID数据集上进行的实验证明了所提出的框架对于视频中目标检测的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号